A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities

نویسندگان

چکیده

We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain $\mathbb{R}^2$. Motivated by geometric inequalities, we prove non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out be very robust and allows for simple proof Szeg\"o type inequality as well new reformulation Faber-Krahn this operator. The paper is complemented strong numerical evidences supporting existence inequality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enlargement of Monotone Operators with Applications to Variational Inequalities

Given a point-to-set operator T, we introduce the operator T " deened as T " (x) = fu : hu ? v; x ? yi 0 for all y 2 R n ; v 2 T(y)g. When T is maximal monotone T " inherits most properties of the "-subdiierential, e.g. it is bounded on bounded sets, T " (x) contains the image through T of a suuciently small ball around x, etc. We prove these and other relevant properties of T " , and apply it ...

متن کامل

Nonlinear Variational Inequalities for Pseudomonotone Operators with Applications∗

In this paper, we prove the existence of solutions to the variational and variational-like inequalities for pseudomonotone and pseudodissipative and, ηpseudomonotone and η-pseudodissipative operators, respectively. As applications of our results, we prove the existence of a unique solution of nonlinear equations, fixed point problems and eigenvalue problems. 1991 Mathematics Subject Classificat...

متن کامل

SADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT

A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...

متن کامل

stability and attraction domains of traffic equilibria in day-to-day dynamical system formulation

در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...

Variational Characterization for Eigenvalues of Dirac Operators

In this paper we give two diierent variational characterizations for the eigenvalues of H + V where H denotes the free Dirac operator and V is a scalar potential. The rst one is a min-max involving a Rayleigh quotient. The second one consists in minimizing an appropriate nonlinear functional. Both methods can be applied to potentials which have singularities as strong as the Coulomb potential.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2021

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-021-03959-6